Math 241

Problem Set 11 solution manual

Exercise. A11.1
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a- We prove the binomial formula by induction:

Base step: forn=1, (a+b)'=a+b= <(1)> al=0p0 + <1) al=tht

So it is true for n = 1

Inductive step: Suppose it is true up to n, and let us prove it for n + 1:
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b- For non-commutative rings, the binomial formula fails.

(a+b)? = a® + ab+ ba + b?
(a+b)? = (a+b)*(a+b) = (a*+ab+ba+b*)(a+b) = a®+a’b+aba+ ab®+ ba® + bab+b*a+b?

Section. 19



Exercise. 9
We first notice that for any element x € Zg x Z4 x.12 = 0, but since we know that the order of
(1,1) is 12, hence 12 is the smallest such number, and hence the char(Zs x Z4)=12.

Exercise. 11
Using the binomial formula we get the following:

(a+b)* = a* +4a®b + 6a%b% + 4ab® 4 b*, but since the ring is of char 4, and since ab, a®b?, ab® € R,
we get the following :

(a+b)* =a*+ (24 4)a?b? + b* = a* + 2a2b* + b* = (a® + b?)?

Exercise. 14 .
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] € My(Z), we can easily see that: { 5 _1 ] [ 9 4 ] =

Consider the element { ;

{ 8 8 } , but matrices are non-zero, hence [ ; i ] is a zero divisor.

Exercise. 23

It is easier to note that a> =a = a(a —1) =0 => a =0 or a — 1 = 0 (this only needs an
integral domain) = a € {0, 1}.

Exercise. 29

Suppose that char(D)=k, with k neither 0 nor a prime number. Then we can find m,n €
N —{0,1} such that k =m - n.
So we get (m.1)(n.1) = 0, and hence since D is an integral domain we have either n.1 = 0 or
m.1 = 0. Suppose (WLOG) we have m.1 = 0, hence m has the property m.a = 0 Voo € D, but
since m < m.n = k we get a contradiction to the fact that char(D) = k.

Hence char(D) must be either 0 or a prime number.

Section. 20
In the exercises from 11 till 14 we are using theorem 20.12 form the book.

Exercise. 11
2x = 6mod(4), GCD(2,4) = 2, and 2 divides 6, hence the we have 2 solutions for this equation in
Zy4, they are x = 1+ 47, and x = 3 + 4Z.

Exercise. 12
22z = bmod(15), GC'D(22,11) = 1, and hence we have only one solution for this equation in Z;s,
and the solution is 5 + 15Z.

Exercise. 13
36x = 15mod(24) but GC'D(36,24) = 12 and 12 doesn’t divide 15, hence we have no solution.

Exercise. 14

452 = 15mod(24), GCD(45,24) = 3, and 3 divides 15, hence we can divide the congruence by 3
to get the equation : 15z = 5mod(8) which is equivalent to 7z = 5mod(8) which is the same as
solving 7Tx = 5 in Zg, but 7 is invertible with inverse 7 in Zg, hence we get x = 3 in Zg, so the
solutions for our equation are 3 + 247, 11 + 247, and 19 + 247Z.



Exercise. 27

For an element a to be its own inverse it must satisfy a? = 1. SO in Zy, the only elements
that are their own ,multiplicative inverse are the solutions for the equation 2> — 1 = 0 =
(x —1)(x + 1) = 0, but since Z, is a field whenever p is prime, this can only happen if z —1 =10
orx+1=0,iex=1o0rxz=—-1=p—1mod(p). So we deduce that the only elements that are
their own multiplicative inverse in Z, are 1, p — 1.

Section. 21

Exercise. 1
We consider the function f: FF — F' = {q1 + ¢2i | q1,¢2 € Q}, where F is the field of fractions of
the integral subdomain D = {n + mi | n,m € Z}.

n+mi
n/+m'i

we define f(n+mi,n +m'i) = n’}Iﬁi, this is a well defined function since we can write
"n’};jfn’:;’ ’T”LZ/;;L”,;”Z', which is an element in F”’, and this is possible because (n +mi,n’ +m'i) € F
implies that n’ + m/7 is non-zero.

[ is surjective since g1 + q2i = 7' + §i = % = f(mb + am’,nb + 0i) where n,m,a,b € Z.

f is injective since by definition of F' we have that n’fizfi = a‘fig?i = (n+mi,n’ +m'i) =
(a+bi,a + V7).

Finally we still have to prove that f is a ring homomorphism, to do that let a; = (n +mi,n' +
m'i),as = (a + bi,a’ + Vi) € F we have to prove that f(a; + a2) = f(a1) + f(ag), and that
f(aq.a2) = f(a1.c2), which can be easily done through some calculations.

Hence we can describe the elements of the field F' to be all complex numbers with rational
components.

Section. 26

Exercise. 12
Let R = Z,then R is an integral domain, it is easy to see that 27Z is an ideal of R with R/27Z = 7Zs
is a field.

Exercise. 13
Also Let R = Z, and consider the ideal 4Z, then it is easy to see that R/47Z has zero divisors.

Exercise. 14
Consider R = Z x Z, and let I = Z x {0}, it is easy to see that I is an ideal of R, and R/I = 7Z
which is an integral domain, while R has zero divisors ( (0,1).(1,0)=(0,0) ).

Exercise. 17
We proved in previous home work that R is ring, and since it is a subset of R, then it is a subring
of R. Now let us prove that ¢ an injective homorphism whose image is R, hence we get that R’ is
a subring of Ma(R).

¢ is well defined map from R into M(R). Let a + bv/2 ,and o/ + b'v/2 € R’ then ¢(a + bv/2 +

a +VV2) = ¢la+d + (b+V)V2) = ‘;iZ/ ng:ab/)] _ [Z 2;} [Z’ 2(113] _
dla+bv2) + d(a’ +b/2).



aa’ + 200" 2(ab’ + ba’)

o((a + bV2)(d + V'V2)) = ¢(aa’ + 2bb' + (ab/ + ba')V/2) = =

b

ab +ba’  ad + 2bb

[ a 2b } [ a’ Qab,, ] = ¢(a+ bv2)p(d + b V/2).

a b

Hence ¢ is a ring homomorphism.
Next suppose ¢(a + byv/2) = 0, hence a = b = 0, hence ¢ is injective.

Finally let g € R/, then g = [

a

b 2ab } for some a,b € Z so g = f(a + bv/2) € f(R), also

f(a) € R for all a € R, hence f(R) = R' so we get that R’ is a subring, and ¢ is am isomorphism
between R and R’.

Exercise. 22

a_

We know that ¢(V) is an adidtive subgroup of ¢(R), so we only have to show that for all
r" € ¢(R), we have that 7’¢(N) C ¢(N), and ¢p(N)r’ C ¢(N).

let ¥ € ¢(R) and y € ¢(N). Then there exists r € R and € N such that ' = ¢(r) and
y = ¢(x). but since x € N and N is an ideal = rz € N = ¢(rz) € ¢(N), =
'y € ¢(N) so '¢(N) C ¢(N). Similarly we can prove that ¢(N)r’ C ¢(N), and hence ¢(N)
is an ideal of ¢(R).

Let R = Z and let R = R, and consider N = 27Z an ideal of R , and let ¢ be such that
¢(n) =n. Then we get ¢(IN) = N, but then 27Z is not an ideal of R.

let N’ be an ideal of ¢(R), then let us prove that ¢~!(N’) is an ideal of R. We know that
¢~ 1(N') is an adidtive subgroup of R, so we only have to prove that r¢~*(N') C ¢~1(N'),
and ¢~ 1(N')r C ¢~ 1(N’) for all r € R.

let r € Rand 2 € ¢~ 1(N'). We want to show that rz and zr belong to ¢~1(N’). Now
r € $~H(N’) means that ¢(z) € N'. Since N’ is an ideal of R’, and ¢(r) € R', we know that

¢(r)¢(x) and ¢(x)p(r) both belong to N'. But then ¢(rz) and ¢(zr) belong to N’, which
means that rz, zr € phi~*(N’), which is what we wanted to show.

Exercise. 37

First it is easy to see that ¢ is a well defined map between C and M3(R). Then let ¢; =
a1 + bii,co = as + boi € C, then gi)(cl + CQ) = gZS((CLl + bl’L) + (CLQ + bQ’L)) = (}5(0,1 + as + (bl +

bo)i) =

d(arag—biba+(a1ba+agby)i) = {

ar+az  bi+by | ar by ag by | _
(b1 +bs) a1+ a } = [ b a [ by a ] = ¢(c1) + ¢(c2), and P(c1.c2) =

ajaz — bibs a1b2+a2b1] _ [ ay b1:| [ as 52] _
—(a1b2+a2b1) alag—blbg —b1 al —bg a9

o(c1)d(c2).
Hence we deduce that ¢ is a ring homomorphism.
Moreover, ¢ is injective since, ¢(a + bi) =0 = a=b=0.
Then ¢ is an isomorphism.



