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Exercise. A11.1
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a- We prove the binomial formula by induction:
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So it is true for n = 1

Inductive step: Suppose it is true up to n, and let us prove it for n+ 1:
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b- For non-commutative rings, the binomial formula fails.

(a+ b)2 = a2 + ab+ ba+ b2

(a+b)3 = (a+b)2(a+b) = (a2 +ab+ba+b2)(a+b) = a3 +a2b+aba+ab2 +ba2 +bab+b2a+b3

Section. 19
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Exercise. 9
We first notice that for any element x ∈ Z3 × Z4 x.12 = 0, but since we know that the order of
(1, 1) is 12, hence 12 is the smallest such number, and hence the char(Z3 × Z4)=12.

Exercise. 11
Using the binomial formula we get the following:
(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4, but since the ring is of char 4, and since a3b, a2b2, ab3 ∈ R,
we get the following :
(a+ b)4 = a4 + (2 + 4)a2b2 + b4 = a4 + 2a2b2 + b4 = (a2 + b2)2

Exercise. 14

Consider the element
[

2 −1
2 −1

]
∈ M2(Z), we can easily see that:

[
2 −1
2 −1

] [
1 2
2 4

]
=[

0 0
0 0

]
, but matrices are non-zero, hence

[
1 2
2 4

]
is a zero divisor.

Exercise. 23

It is easier to note that a2 = a =⇒ a(a− 1) = 0 =⇒ a = 0 or a− 1 = 0 (this only needs an
integral domain) =⇒ a ∈ {0, 1}.

Exercise. 29

Suppose that char(D)=k, with k neither 0 nor a prime number. Then we can find m,n ∈
N− {0, 1} such that k = m · n.
So we get (m.1)(n.1) = 0, and hence since D is an integral domain we have either n.1 = 0 or
m.1 = 0. Suppose (WLOG) we have m.1 = 0, hence m has the property m.α = 0 ∀α ∈ D, but
since m < m.n = k we get a contradiction to the fact that char(D) = k.

Hence char(D) must be either 0 or a prime number.

Section. 20
In the exercises from 11 till 14 we are using theorem 20.12 form the book.

Exercise. 11
2x ≡ 6mod(4), GCD(2, 4) = 2, and 2 divides 6, hence the we have 2 solutions for this equation in
Z4, they are x = 1 + 4Z, and x = 3 + 4Z.

Exercise. 12
22x ≡ 5mod(15), GCD(22, 11) = 1, and hence we have only one solution for this equation in Z15,
and the solution is 5 + 15Z.

Exercise. 13
36x ≡ 15mod(24) but GCD(36, 24) = 12 and 12 doesn’t divide 15, hence we have no solution.

Exercise. 14
45x ≡ 15mod(24), GCD(45, 24) = 3, and 3 divides 15, hence we can divide the congruence by 3
to get the equation : 15x ≡ 5mod(8) which is equivalent to 7x ≡ 5mod(8) which is the same as
solving 7x = 5 in Z8, but 7 is invertible with inverse 7 in Z8, hence we get x = 3 in Z8, so the
solutions for our equation are 3 + 24Z, 11 + 24Z, and 19 + 24Z.
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Exercise. 27

For an element a to be its own inverse it must satisfy a2 = 1. SO in Zp the only elements
that are their own ,multiplicative inverse are the solutions for the equation x2 − 1 = 0 =⇒
(x − 1)(x + 1) = 0, but since Zp is a field whenever p is prime, this can only happen if x − 1 = 0
or x + 1 = 0, i.e x = 1 or x = −1 ≡ p − 1 mod(p). So we deduce that the only elements that are
their own multiplicative inverse in Zp are 1, p− 1.

Section. 21

Exercise. 1
We consider the function f : F −→ F ′ = {q1 + q2i | q1, q2 ∈ Q}, where F is the field of fractions of
the integral subdomain D = {n+mi | n,m ∈ Z}.

we define f(n+mi, n′+m′i) = n+mi
n′+m′i , this is a well defined function since we can write n+mi

n′+m′i =
nn′+mm′

n′2+m′2 + mn′−m′n
n′2+m′2 i, which is an element in F ′, and this is possible because (n+mi, n′+m′i) ∈ F

implies that n′ +m′i is non-zero.
f is surjective since q1 + q2i = m

n + a
b i = mb+ani

nb = f(mb+ ani, nb+ 0i) where n,m, a, b ∈ Z.
f is injective since by definition of F we have that n+mi

n′+m′i = a+bi
a′+b′i =⇒ (n + mi, n′ + m′i) =

(a+ bi, a′ + b′i).
Finally we still have to prove that f is a ring homomorphism, to do that let α1 = (n+mi, n′+

m′i), α2 = (a + bi, a′ + b′i) ∈ F we have to prove that f(α1 + α2) = f(α1) + f(α2), and that
f(α1.α2) = f(α1.α2), which can be easily done through some calculations.

Hence we can describe the elements of the field F to be all complex numbers with rational
components.

Section. 26

Exercise. 12
Let R = Z,then R is an integral domain, it is easy to see that 2Z is an ideal of R with R/2Z = Z2

is a field.

Exercise. 13
Also Let R = Z, and consider the ideal 4Z, then it is easy to see that R/4Z has zero divisors.

Exercise. 14
Consider R = Z × Z, and let I = Z × {0}, it is easy to see that I is an ideal of R, and R/I ∼= Z
which is an integral domain, while R has zero divisors ( (0,1).(1,0)=(0,0) ).

Exercise. 17
We proved in previous home work that R is ring, and since it is a subset of R, then it is a subring
of R. Now let us prove that φ an injective homorphism whose image is R′, hence we get that R′ is
a subring of M2(R).

φ is well defined map from R into M2(R). Let a+ b
√

2 ,and a′ + b′
√

2 ∈ R′ then φ(a+ b
√

2 +

a′ + b′
√

2) = φ(a + a′ + (b + b′)
√

2) =
[
a+ a′ 2(b+ b′)
b+ b′ a+ a′

]
=

[
a 2b
b a

]
+

[
a′ 2b′

b′ a′

]
=

φ(a+ b
√

2) + φ(a′ + b′
√

2).
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φ((a + b
√

2)(a′ + b′
√

2)) = φ(aa′ + 2bb′ + (ab′ + ba′)
√

2) =
[
aa′ + 2bb′ 2(ab′ + ba′)
ab′ + ba′ aa′ + 2bb′

]
=[

a 2b
b a

] [
a′ 2b′

b′ a′

]
= φ(a+ b

√
2)φ(a′ + b′

√
2).

Hence φ is a ring homomorphism.
Next suppose φ(a+ b

√
2) = 0, hence a = b = 0, hence φ is injective.

Finally let g ∈ R′, then g =
[
a 2b
b a

]
for some a, b ∈ Z so g = f(a + b

√
2) ∈ f(R), also

f(α) ∈ R′ for all α ∈ R, hence f(R) = R′ so we get that R′ is a subring, and φ is am isomorphism
between R and R′.

Exercise. 22

a- We know that φ(N) is an adidtive subgroup of φ(R), so we only have to show that for all
r′ ∈ φ(R), we have that r′φ(N) ⊆ φ(N), and φ(N)r′ ⊆ φ(N).

let r′ ∈ φ(R) and y ∈ φ(N). Then there exists r ∈ R and x ∈ N such that r′ = φ(r) and
y = φ(x). but since x ∈ N and N is an ideal =⇒ rx ∈ N =⇒ φ(rx) ∈ φ(N), =⇒
r′y ∈ φ(N) so r′φ(N) ⊆ φ(N). Similarly we can prove that φ(N)r′ ⊆ φ(N), and hence φ(N)
is an ideal of φ(R).

b- Let R = Z and let R′ = R, and consider N = 2Z an ideal of R , and let φ be such that
φ(n) = n. Then we get φ(N) = N , but then 2Z is not an ideal of R.

c- let N ′ be an ideal of φ(R), then let us prove that φ−1(N ′) is an ideal of R. We know that
φ−1(N ′) is an adidtive subgroup of R, so we only have to prove that rφ−1(N ′) ⊆ φ−1(N ′),
and φ−1(N ′)r ⊆ φ−1(N ′) for all r ∈ R.

let r ∈ R and x ∈ φ−1(N ′). We want to show that rx and xr belong to φ−1(N ′). Now
x ∈ φ−1(N ′) means that φ(x) ∈ N ′. Since N ′ is an ideal of R′, and φ(r) ∈ R′, we know that
φ(r)φ(x) and φ(x)φ(r) both belong to N ′. But then φ(rx) and φ(xr) belong to N ′, which
means that rx, xr ∈ phi−1(N ′), which is what we wanted to show.

Exercise. 37

First it is easy to see that φ is a well defined map between C and M2(R). Then let c1 =
a1 + b1i, c2 = a2 + b2i ∈ C, then φ(c1 + c2) = φ((a1 + b1i) + (a2 + b2i)) = φ(a1 + a2 + (b1 +

b2)i) =
[

a1 + a2 b1 + b2
−(b1 + b2) a1 + a2

]
=

[
a1 b1
−b1 a1

]
+

[
a2 b2
−b2 a2

]
= φ(c1) +φ(c2), and φ(c1.c2) =

φ(a1a2−b1b2+(a1b2+a2b1)i) =
[

a1a2 − b1b2 a1b2 + a2b1
−(a1b2 + a2b1) a1a2 − b1b2

]
=

[
a1 b1
−b1 a1

] [
a2 b2
−b2 a2

]
=

φ(c1)φ(c2).
Hence we deduce that φ is a ring homomorphism.
Moreover, φ is injective since, φ(a+ bi) = 0 =⇒ a = b = 0.
Then φ is an isomorphism.
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