Math 241

Problem Set 11 solution manual

Exercise. A11.1

Lemma 1. $\binom{n}{i+1}\binom{n}{i}=\binom{n+1}{i+1}$.
Proof. $\binom{n}{i+1}\binom{n}{i}=\frac{n!}{(i+1)!(n-(i+1))!}+\frac{n}{i!(n-i)!}=\frac{n!(n-i)}{(i+1)!(n-i)!}+\frac{n!(i+1)}{(i+1)!(n-i)!}=\frac{(n+1)!}{(i+1)!((n+1)-(i+1))!}=$ $\binom{n+1}{i+1}$.
a- We prove the binomial formula by induction:
Base step : for $n=1,(a+b)^{1}=a+b=\binom{1}{0} a^{1-0} b^{0}+\binom{1}{1} a^{1-1} b^{1}$
So it is true for $n=1$
Inductive step: Suppose it is true up to n, and let us prove it for $n+1$:

$$
\begin{aligned}
& (a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b) \sum_{i=1 \ldots n}^{\sum}\binom{n}{i} a^{n-i} b^{i} \\
& =\sum_{i=0 \ldots n}\binom{n}{i} a^{n-i+1} b^{i}+\sum_{i=0 \ldots n}^{\sum}\binom{n}{i} a^{n-i} b^{i+1} \\
& =a^{n+1}+\left[\sum_{i=1 \ldots n}^{\Sigma}\binom{n}{i} a^{n-i+1} b^{i}\right]+\left[\sum_{i=0 \ldots(n-1)}\binom{n}{i} a^{n-i} b^{i+1}\right]+b^{n+1} \\
& =a^{n+1}+\left[\sum_{i=1 \ldots n}^{\sum}\binom{n}{i} a^{n-i+1} b^{i}\right]+\left[\sum_{i=1 \ldots(n-1)}\binom{n}{i-1} a^{n-i+1} b^{i}\right]+b^{n+1} \\
& =a^{n+1}+\left[\sum_{i=1 \ldots n}^{\sum}\left(\binom{n}{i}+\binom{n}{i-1}\right) a^{n-i+1} b^{i}\right]+b^{n+1} \\
& =a^{n+1}+\left[\sum_{i=1 \ldots n}^{\sum}\binom{n+1}{i} a^{n-i+1} b^{i}\right]+b^{n+1} \\
& ={ }_{i=0}^{\sum}\binom{n+1}{i} a^{(n+1)-i} b^{i} \\
& i+1
\end{aligned}
$$

b- For non-commutative rings, the binomial formula fails.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+a b+b a+b^{2} \\
& (a+b)^{3}=(a+b)^{2}(a+b)=\left(a^{2}+a b+b a+b^{2}\right)(a+b)=a^{3}+a^{2} b+a b a+a b^{2}+b a^{2}+b a b+b^{2} a+b^{3}
\end{aligned}
$$

Section. 19

Exercise. 9

We first notice that for any element $x \in \mathbb{Z}_{3} \times \mathbb{Z}_{4} x .12=0$, but since we know that the order of $(1,1)$ is 12 , hence 12 is the smallest such number, and hence the $\operatorname{char}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)=12$.

Exercise. 11

Using the binomial formula we get the following:
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$, but since the ring is of char 4 , and since $a^{3} b, a^{2} b^{2}, a b^{3} \in R$, we get the following :
$(a+b)^{4}=a^{4}+(2+4) a^{2} b^{2}+b^{4}=a^{4}+2 a^{2} b^{2}+b^{4}=\left(a^{2}+b^{2}\right)^{2}$
Exercise. 14
Consider the element $\left[\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right] \in M_{2}(\mathbb{Z})$, we can easily see that: $\left[\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, but matrices are non-zero, hence $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ is a zero divisor.

Exercise. 23

It is easier to note that $a^{2}=a \Longrightarrow a(a-1)=0 \Longrightarrow a=0$ or $a-1=0$ (this only needs an integral domain) $\Longrightarrow a \in\{0,1\}$.

Exercise. 29
Suppose that $\operatorname{char}(D)=k$, with k neither 0 nor a prime number. Then we can find $m, n \in$ $\mathbb{N}-\{0,1\}$ such that $k=m \cdot n$.
So we get $(m .1)(n .1)=0$, and hence since D is an integral domain we have either $n .1=0$ or $m .1=0$. Suppose (WLOG) we have $m .1=0$, hence m has the property $m . \alpha=0 \forall \alpha \in D$, but since $m<m . n=k$ we get a contradiction to the fact that $\operatorname{char}(D)=k$.

Hence $\operatorname{char}(D)$ must be either 0 or a prime number.
Section. 20
In the exercises from 11 till 14 we are using theorem 20.12 form the book.

Exercise. 11

$2 x \equiv 6 \bmod (4), G C D(2,4)=2$, and 2 divides 6 , hence the we have 2 solutions for this equation in \mathbb{Z}_{4}, they are $x=1+4 \mathbb{Z}$, and $x=3+4 \mathbb{Z}$.

Exercise. 12
$22 x \equiv 5 \bmod (15), G C D(22,11)=1$, and hence we have only one solution for this equation in \mathbb{Z}_{15}, and the solution is $5+15 \mathbb{Z}$.

Exercise. 13
$36 x \equiv 15 \bmod (24)$ but $G C D(36,24)=12$ and 12 doesn't divide 15 , hence we have no solution.

Exercise. 14

$45 x \equiv 15 \bmod (24), G C D(45,24)=3$, and 3 divides 15 , hence we can divide the congruence by 3 to get the equation : $15 x \equiv 5 \bmod (8)$ which is equivalent to $7 x \equiv 5 \bmod (8)$ which is the same as solving $7 x=5$ in \mathbb{Z}_{8}, but 7 is invertible with inverse 7 in \mathbb{Z}_{8}, hence we get $x=3$ in \mathbb{Z}_{8}, so the solutions for our equation are $3+24 \mathbb{Z}, 11+24 \mathbb{Z}$, and $19+24 \mathbb{Z}$.

Exercise. 27

For an element a to be its own inverse it must satisfy $a^{2}=1$. SO in \mathbb{Z}_{p} the only elements that are their own ,multiplicative inverse are the solutions for the equation $x^{2}-1=0 \Longrightarrow$ $(x-1)(x+1)=0$, but since \mathbb{Z}_{p} is a field whenever p is prime, this can only happen if $x-1=0$ or $x+1=0$, i.e $x=1$ or $x=-1 \equiv p-1 \bmod (p)$. So we deduce that the only elements that are their own multiplicative inverse in \mathbb{Z}_{p} are $1, p-1$.

Section. 21
Exercise. 1
We consider the function $f: F \longrightarrow F^{\prime}=\left\{q_{1}+q_{2} i \mid q_{1}, q_{2} \in \mathbb{Q}\right\}$, where F is the field of fractions of the integral subdomain $D=\{n+m i \mid n, m \in \mathbb{Z}\}$.
we define $f\left(n+m i, n^{\prime}+m^{\prime} i\right)=\frac{n+m i}{n^{\prime}+m^{\prime} i}$, this is a well defined function since we can write $\frac{n+m i}{n^{\prime}+m^{\prime} i}=$ $\frac{n n^{\prime}+m m^{\prime}}{n^{\prime 2}+m^{\prime 2}}+\frac{m n^{\prime}-m^{\prime} n}{n^{\prime 2}+m^{\prime 2}} i$, which is an element in F^{\prime}, and this is possible because $\left(n+m i, n^{\prime}+m^{\prime} i\right) \in F$ implies that $n^{\prime}+m^{\prime} i$ is non-zero.
f is surjective since $q_{1}+q_{2} i=\frac{m}{n}+\frac{a}{b} i=\frac{m b+a n i}{n b}=f(m b+a n i, n b+0 i)$ where $n, m, a, b \in \mathbb{Z}$. f is injective since by definition of F we have that $\frac{n+m i}{n^{\prime}+m^{\prime} i}=\frac{a+b i}{a^{\prime}+b^{\prime} i} \Longrightarrow\left(n+m i, n^{\prime}+m^{\prime} i\right)=$ $\left(a+b i, a^{\prime}+b^{\prime} i\right)$.

Finally we still have to prove that f is a ring homomorphism, to do that let $\alpha_{1}=\left(n+m i, n^{\prime}+\right.$ $\left.m^{\prime} i\right), \alpha_{2}=\left(a+b i, a^{\prime}+b^{\prime} i\right) \in F$ we have to prove that $f\left(\alpha_{1}+\alpha_{2}\right)=f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)$, and that $f\left(\alpha_{1} \cdot \alpha_{2}\right)=f\left(\alpha_{1} . \alpha_{2}\right)$, which can be easily done through some calculations.

Hence we can describe the elements of the field F to be all complex numbers with rational components.

Section. 26
Exercise. 12
Let $R=\mathbb{Z}$,then R is an integral domain, it is easy to see that $2 \mathbb{Z}$ is an ideal of R with $R / 2 \mathbb{Z}=\mathbb{Z}_{2}$ is a field.

Exercise. 13
Also Let $R=\mathbb{Z}$, and consider the ideal $4 \mathbb{Z}$, then it is easy to see that $R / 4 \mathbb{Z}$ has zero divisors.
Exercise. 14
Consider $R=\mathbb{Z} \times \mathbb{Z}$, and let $I=\mathbb{Z} \times\{0\}$, it is easy to see that I is an ideal of R, and $R / I \cong \mathbb{Z}$ which is an integral domain, while R has zero divisors $((0,1) \cdot(1,0)=(0,0))$.

Exercise. 17
We proved in previous home work that R is ring, and since it is a subset of \mathbb{R}, then it is a subring of \mathbb{R}. Now let us prove that ϕ an injective homorphism whose image is R^{\prime}, hence we get that R^{\prime} is a subring of $M_{2}(\mathbb{R})$.
ϕ is well defined map from R into $M_{2}(\mathbb{R})$. Let $a+b \sqrt{2}$, and $a^{\prime}+b^{\prime} \sqrt{2} \in R^{\prime}$ then $\phi(a+b \sqrt{2}+$ $\left.a^{\prime}+b^{\prime} \sqrt{2}\right)=\phi\left(a+a^{\prime}+\left(b+b^{\prime}\right) \sqrt{2}\right)=\left[\begin{array}{cc}a+a^{\prime} & 2\left(b+b^{\prime}\right) \\ b+b^{\prime} & a+a^{\prime}\end{array}\right]=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]+\left[\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right]=$ $\phi(a+b \sqrt{2})+\phi\left(a^{\prime}+b^{\prime} \sqrt{2}\right)$.
$\phi\left((a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)\right)=\phi\left(a a^{\prime}+2 b b^{\prime}+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{2}\right)=\left[\begin{array}{cc}a a^{\prime}+2 b b^{\prime} & 2\left(a b^{\prime}+b a^{\prime}\right) \\ a b^{\prime}+b a^{\prime} & a a^{\prime}+2 b b^{\prime}\end{array}\right]=$ $\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]\left[\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right]=\phi(a+b \sqrt{2}) \phi\left(a^{\prime}+b^{\prime} \sqrt{2}\right)$.

Hence ϕ is a ring homomorphism.
Next suppose $\phi(a+b \sqrt{2})=0$, hence $a=b=0$, hence ϕ is injective.
Finally let $g \in R^{\prime}$, then $g=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]$ for some $a, b \in \mathbb{Z}$ so $g=f(a+b \sqrt{2}) \in f(R)$, also $f(\alpha) \in R^{\prime}$ for all $\alpha \in R$, hence $f(R)=R^{\prime}$ so we get that R^{\prime} is a subring, and ϕ is am isomorphism between R and R^{\prime}.

Exercise. 22
a- We know that $\phi(N)$ is an adidtive subgroup of $\phi(R)$, so we only have to show that for all $r^{\prime} \in \phi(R)$, we have that $r^{\prime} \phi(N) \subseteq \phi(N)$, and $\phi(N) r^{\prime} \subseteq \phi(N)$.
let $r^{\prime} \in \phi(R)$ and $y \in \phi(N)$. Then there exists $r \in R$ and $x \in N$ such that $r^{\prime}=\phi(r)$ and $y=\phi(x)$. but since $x \in N$ and N is an ideal $\Longrightarrow r x \in N \Longrightarrow \phi(r x) \in \phi(N), \Longrightarrow$ $r^{\prime} y \in \phi(N)$ so $r^{\prime} \phi(N) \subseteq \phi(N)$. Similarly we can prove that $\phi(N) r^{\prime} \subseteq \phi(N)$, and hence $\phi(N)$ is an ideal of $\phi(R)$.
b- Let $R=\mathbb{Z}$ and let $R^{\prime}=\mathbb{R}$, and consider $N=2 \mathbb{Z}$ an ideal of R, and let ϕ be such that $\phi(n)=n$. Then we get $\phi(N)=N$, but then $2 \mathbb{Z}$ is not an ideal of \mathbb{R}.
c- let N^{\prime} be an ideal of $\phi(R)$, then let us prove that $\phi^{-1}\left(N^{\prime}\right)$ is an ideal of R. We know that $\phi^{-1}\left(N^{\prime}\right)$ is an adidtive subgroup of R, so we only have to prove that $r \phi^{-1}\left(N^{\prime}\right) \subseteq \phi^{-1}\left(N^{\prime}\right)$, and $\phi^{-1}\left(N^{\prime}\right) r \subseteq \phi^{-1}\left(N^{\prime}\right)$ for all $r \in R$.
let $r \in R$ and $x \in \phi^{-1}\left(N^{\prime}\right)$. We want to show that $r x$ and $x r$ belong to $\phi^{-1}\left(N^{\prime}\right)$. Now $x \in \phi^{-1}\left(N^{\prime}\right)$ means that $\phi(x) \in N^{\prime}$. Since N^{\prime} is an ideal of R^{\prime}, and $\phi(r) \in R^{\prime}$, we know that $\phi(r) \phi(x)$ and $\phi(x) \phi(r)$ both belong to N^{\prime}. But then $\phi(r x)$ and $\phi(x r)$ belong to N^{\prime}, which means that $r x, x r \in p h i^{-1}\left(N^{\prime}\right)$, which is what we wanted to show.

Exercise. 37

First it is easy to see that ϕ is a well defined map between \mathbb{C} and $M_{2}(\mathbb{R})$. Then let $c_{1}=$ $a_{1}+b_{1} i, c_{2}=a_{2}+b_{2} i \in \mathbb{C}$, then $\phi\left(c_{1}+c_{2}\right)=\phi\left(\left(a_{1}+b_{1} i\right)+\left(a_{2}+b_{2} i\right)\right)=\phi\left(a_{1}+a_{2}+\left(b_{1}+\right.\right.$ $\left.b_{2}\right) i=\left[\begin{array}{cc}a_{1}+a_{2} & b_{1}+b_{2} \\ -\left(b_{1}+b_{2}\right) & a_{1}+a_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1} & b_{1} \\ -b_{1} & a_{1}\end{array}\right]+\left[\begin{array}{cc}a_{2} & b_{2} \\ -b_{2} & a_{2}\end{array}\right]=\phi\left(c_{1}\right)+\phi\left(c_{2}\right)$, and $\phi\left(c_{1} \cdot c_{2}\right)=$ $\phi\left(a_{1} a_{2}-b_{1} b_{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) i\right)=\left[\begin{array}{cc}a_{1} a_{2}-b_{1} b_{2} & a_{1} b_{2}+a_{2} b_{1} \\ -\left(a_{1} b_{2}+a_{2} b_{1}\right) & a_{1} a_{2}-b_{1} b_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1} & b_{1} \\ -b_{1} & a_{1}\end{array}\right]\left[\begin{array}{cc}a_{2} & b_{2} \\ -b_{2} & a_{2}\end{array}\right]=$ $\phi\left(c_{1}\right) \phi\left(c_{2}\right)$.

Hence we deduce that ϕ is a ring homomorphism.
Moreover, ϕ is injective since, $\phi(a+b i)=0 \Longrightarrow a=b=0$.
Then ϕ is an isomorphism.

